PSEB CLASS – XII (2025–26) MATHEMATICS SAMPLE PAPER SET 2

 


PSEB CLASS – XII (2025–26) MATHEMATICS SAMPLE PAPER SET 2

Maximum Marks: 80
Time Allowed: 3 Hours

General Instructions:

  1. All questions are compulsory.

  2. The question paper consists of 18 questions divided into 4 sections A, B, C, and D.

  3. Section A comprises 1 question of 20 multiple-choice type questions carrying 1 mark each.

  4. Section B comprises 7 questions of 2 marks each.

  5. Section C comprises 7 questions of 4 marks each.

  6. Section D comprises 3 questions of 6 marks each.

  7. Internal choice has been provided in some questions. Attempt only one of the choices.

  8. Use of calculators is not permitted.


Section – A (Each Question 1 Mark, Total 20 Marks)

Q1. MCQ (Choose the correct option):

(i) If f(x)=1x+1f(x) = \dfrac{1}{x+1}, then domain of ff is:
(a) R\mathbb{R}
(b) R{1}\mathbb{R} - \{-1\}
(c) N\mathbb{N}
(d) None of these

(ii) Principal value of cos1(12)\cos^{-1}\left(-\tfrac{1}{2}\right) is:
(a) 2π3\dfrac{2\pi}{3}
(b) π3\dfrac{\pi}{3}
(c) π3-\dfrac{\pi}{3}
(d) 2π3-\dfrac{2\pi}{3}

(iii) If AA is a 2×22\times2 matrix with A=5|A| = 5, then 3A|3A| is:
(a) 15
(b) 30
(c) 45
(d) 75

(iv) If adjoint of A=[2134]A = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}, then trace of adjAA is:
(a) 6
(b) 5
(c) 8
(d) 4




(v) If f(x)=x3f(x) = x^3, then f(2)f'(2) is:
(a) 4
(b) 6
(c) 12
(d) 3

(vi) The point at which the function f(x)=x2f(x) = |x-2| is not differentiable is:
(a) 0
(b) 1
(c) 2
(d) 3

(vii) limx0sin7xx\lim_{x\to 0} \dfrac{\sin 7x}{x} equals:
(a) 0
(b) 1
(c) 7
(d) ∞

(viii) If y=sin1xy = \sin^{-1} x, then dydx\dfrac{dy}{dx} is:
(a) 11x2\dfrac{1}{\sqrt{1-x^2}}
(b) 1x2\sqrt{1-x^2}
(c) 11+x2\dfrac{1}{1+x^2}
(d) None

(ix) The interval of monotonic increase of f(x)=x39xf(x) = x^3 - 9x is:
(a) (-∞, -√3) ∪ (√3, ∞)
(b) (-√3, √3)
(c) (-∞, ∞)
(d) None

(x) 0πsin2xdx\int_0^\pi \sin^2 x \, dx equals:
(a) π/2\pi/2
(b) π\pi
(c) 0
(d) 1

(xi) 1x2+1dx\int \dfrac{1}{x^2+1} dx is:
(a) tan1x+C\tan^{-1}x + C
(b) sin1x+C\sin^{-1}x + C
(c) cos1x+C\cos^{-1}x + C
(d) None

(xii) Area under the curve y=x2y = x^2 between x=0x=0 and x=2x=2 is:
(a) 4
(b) 8/3
(c) 16/3
(d) 2

(xiii) If x=acost,y=bsintx = a\cos t, y = b\sin t, then dydx\dfrac{dy}{dx} is:
(a) abcott\dfrac{a}{b}\cot t
(b) bacott\dfrac{b}{a}\cot t
(c) abtant-\dfrac{a}{b}\tan t
(d) batant-\dfrac{b}{a}\tan t

(xiv) If mean of binomial distribution B(n,p)B(n, p) is 12 and variance is 3, then nn is:
(a) 12
(b) 15
(c) 20
(d) 25

(xv) If events A and B are independent, with P(A)=0.5,P(B)=0.3P(A) = 0.5, P(B) = 0.3, then P(AB)P(A\cap B) is:
(a) 0.15
(b) 0.20
(c) 0.80
(d) 0.10

(xvi) The vector a=2i^j^+2k^\vec{a} = 2\hat{i} - \hat{j} + 2\hat{k} has magnitude:
(a) 2
(b) 3
(c) √9
(d) 3

(xvii) Equation of line through (1,2,3) parallel to vector 2i^j^+k^2\hat{i} - \hat{j} + \hat{k} is:
(a) x12=y21=z31\dfrac{x-1}{2} = \dfrac{y-2}{-1} = \dfrac{z-3}{1}
(b) x+12=y+21=z+31\dfrac{x+1}{2} = \dfrac{y+2}{-1} = \dfrac{z+3}{1}
(c) x12=y21=z31\dfrac{x-1}{-2} = \dfrac{y-2}{1} = \dfrac{z-3}{-1}
(d) None

(xviii) Distance between parallel planes 2x+3y+6z=42x+3y+6z=4 and 2x+3y+6z=72x+3y+6z=7 is:
(a) 3/7
(b) 7/3
(c) 1/√49
(d) 3/7

(xix) If AA and BB are two events such that P(A)=0.4,P(B)=0.5,P(AB)=0.7P(A) = 0.4, P(B)=0.5, P(A\cup B)=0.7, then P(AB)P(A\cap B) is:
(a) 0.2
(b) 0.1
(c) 0.3
(d) 0.9

(xx) The feasible region of an LPP is always:
(a) Convex
(b) Concave
(c) Circular
(d) None


Section – B (Each Question 2 Marks, Total 14 Marks)

Q2. If A=[1234]A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, find A1A^{-1}.

Q3. Find value of kk if matrix [k268]\begin{bmatrix} k & 2 \\ 6 & 8 \end{bmatrix} is singular.

Q4. If y=sin1xy = \sin^{-1}\sqrt{x}, find dydx\dfrac{dy}{dx}.

Q5. If f(x)=x33x+1f(x) = x^3 - 3x + 1, find intervals of monotonicity.

Q6. Evaluate (ex+x2)dx\int (e^x + x^2) dx.

Q7. Find mean of distribution:

| x | 0 | 1 | 2 | 3 | 4 |
|-----|---|---|---|---|
| f | 5 |10 |10 | 5 | 0 |

Q8. Find projection of vector a=2i^+j^+2k^\vec{a} = 2\hat{i} + \hat{j} + 2\hat{k} on b=i^+2j^+2k^\vec{b} = \hat{i} + 2\hat{j} + 2\hat{k}.


Section – C (Each Question 4 Marks, Total 28 Marks)

Q9. Show that function f(x)=x1x+1,x1f(x) = \dfrac{x-1}{x+1}, x \neq -1 is one-one and onto.

Q10. If A=[2314],B=[1230]A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix}, verify (AB)T=BTAT(AB)^T = B^T A^T.

Q11. Find derivative of y=xxy = x^x.

Q12. Evaluate 01x21+x2dx\int_0^1 \dfrac{x^2}{1+x^2} dx.

Q13. Find area under parabola y2=4xy^2 = 4x between x=0x=0 and x=4x=4.

Q14. Solve differential equation dydx+y=ex\dfrac{dy}{dx} + y = e^x.

Q15. A card is drawn at random from a well-shuffled pack of 52 cards. Find probability that it is (i) a red card, (ii) a king or queen, (iii) not a face card.


Section – D (Each Question 6 Marks, Total 18 Marks)

Q16. Solve system of equations by matrix method:

x+y+z=6,2xy+3z=14,x+2y+z=10x+y+z=6, \quad 2x-y+3z=14, \quad x+2y+z=10

Q17. Find the equation of the plane passing through points (1,0,0), (0,2,0), (0,0,3).

OR

Find shortest distance between lines:

r=(2i^+3j^+4k^)+λ(i^j^+2k^),r=(5i^+2j^+k^)+μ(2i^+3j^+k^)\vec{r} = (2\hat{i}+3\hat{j}+4\hat{k}) + \lambda(\hat{i} - \hat{j} + 2\hat{k}), \quad \vec{r} = (5\hat{i}+2\hat{j}+\hat{k}) + \mu(2\hat{i}+3\hat{j}+\hat{k})

Q18. Solve the following Linear Programming Problem graphically:
Maximize Z=3x+2yZ = 3x+2y subject to constraints:

x+y6,x0,y0x+y \leq 6, \quad x \geq 0, \quad y \geq 0


💐🌿Follow us for latest updates 👇👇👇

Featured post

Holiday Declared: ਮੰਗਲਵਾਰ ਦੀ ਸਰਕਾਰੀ ਛੁੱਟੀ ਦਾ ਐਲਾਨ

11 ਨਵੰਬਰ ਨੂੰ ਤਰਨ ਤਾਰਨ ਵਿਧਾਨ ਸਭਾ ਉਪਚੋਣ ਮੌਕੇ ਤਨਖਾਹ ਸਮੇਤ ਛੁੱਟੀ ਦਾ ਐਲਾਨ ਤਰਨ ਤਾਰਨ, 11 ਨਵੰਬਰ 2025  ( ਜਾਬਸ ਆਫ ਟੁਡੇ) — ਡਿਪਟੀ ਕਮਿਸ਼ਨਰ-ਕਮ-ਜ਼ਿਲ੍ਹਾ ਦੰ...

RECENT UPDATES

Trends