Mathematics Question Paper Class 12 September Exam 2025



Mathematics Question Paper Class 12 September Exam 2025 

Maximum Marks: 80
Time Allowed: 3 Hrs


Section – A (Each Question carries 1 Mark)

Q1. MCQ (Choose the correct option):

(i) Let f:NNf: \mathbb{N} \to \mathbb{N} be defined as f(x)=x2f(x) = x^2, then
(a) ff is one-one only
(b) ff is onto only
(c) ff is both one-one and onto
(d) ff is neither one-one nor onto

(ii) If LL is a set of all straight lines in a plane and RR is a relation on LL defined as

R={(L1,L2):L1L2}R = \{ (L_1, L_2): L_1 \parallel L_2 \}

then relation RR is:
(a) Reflexive only
(b) Symmetric only
(c) Transitive only
(d) Equivalence relation

(iii) Principal value of sin1(32)\sin^{-1}\left(-\tfrac{\sqrt{3}}{2}\right) is:
(a) 5π6\tfrac{5\pi}{6}
(b) π6\tfrac{\pi}{6}
(c) π6-\tfrac{\pi}{6}
(d) 5π6-\tfrac{5\pi}{6}

(iv) If AA is a matrix of order 2×32 \times 3 and BB is a matrix of order 4×24 \times 2, then order of ATBA^T B is:
(a) 3×43 \times 4
(b) 4×34 \times 3
(c) 2×22 \times 2
(d) 2×42 \times 4

(v) Let AA be a square matrix of order 3×33 \times 3 and 2A=264|2A| = 264. Then A|A| equals:
(a) 12
(b) 8
(c) 3
(d) 4

(vi) If

[k44k]\begin{bmatrix} k & 4 \\ -4 & -k \end{bmatrix}

is a singular matrix, then value of kk is:
(a) 0
(b) ±4\pm 4
(c) 4
(d) -4

(vii) If the function defined by

f(x)={sin5xx,x0k+2,x=0f(x) = \begin{cases} \dfrac{\sin 5x}{x}, & x \neq 0 \\ k+2, & x=0 \end{cases}

is continuous at x=0x=0, then value of kk is:
(a) 0
(b) 2
(c) -2
(d) -1

(viii) If x=2at,y=at2x=2at, y=at^2, then dydx\tfrac{dy}{dx} is equal to:
(a) tt
(b) 2at2at
(c) 1t\tfrac{1}{t}
(d) 2a2a

(ix) If f(x)=x2+3x+4f(x) = x^2 + 3x + 4, then f(0)f'(0) is:
(a) 6
(b) 3
(c) 4
(d) 9

(x) The interval for which the function f(x)=x26x+3f(x) = x^2 - 6x + 3 is strictly increasing is:
(a) (-3, 3)
(b) (3, ∞)
(c) (-3, ∞)
(d) (-∞, 3)

(xi) 33(x5+sinx)dx\int_{-3}^{3} (x^5 + \sin x) \, dx equals:
(a) 55+sin35^5 + \sin 3
(b) 3
(c) 0
(d) 6

(xii) (logx)2xdx\int \dfrac{(\log x)^2}{x} \, dx equals:
(a) 1x+C\dfrac{1}{x} + C
(b) logx+C\log x + C
(c) (logx)22+C\dfrac{(\log x)^2}{2} + C
(d) (logx)33+C\dfrac{(\log x)^3}{3} + C

(xiii) The number of arbitrary constants in the particular solution of a differential equation of fourth order is:
(a) 0
(b) 4
(c) 3
(d) 2

(xiv) The inequality a+ba+b|a+b| \leq |a| + |b| is called:
(a) Cauchy–Schwarz Inequality
(b) Rolle’s Theorem
(c) Triangle Inequality
(d) L.M.V. Theorem

(xv) If a\vec{a} is any vector, then a×a\vec{a} \times \vec{a} is:
(a) 0\vec{0}
(b) a2a^2
(c) a\vec{a}
(d) i^\hat{i}

(xvi) If lines

x12=y32=z+6a,x11=y32=z+62\dfrac{x-1}{k} = \dfrac{y-3}{2} = \dfrac{z+6}{a}, \quad \dfrac{x-1}{1} = \dfrac{y-3}{2} = \dfrac{z+6}{2}

are perpendicular, then value of kk is:
(a) 0
(b) 2
(c) 1
(d) -2
(e) 3

(xvii) The vector form of line x53=y+41=z+86\dfrac{x-5}{3} = \dfrac{y+4}{-1} = \dfrac{z+8}{6} is:
(a) r=(3i^+7j^+6k^)+λ(5i^+4j^+8k^)\vec{r} = (3\hat{i} + 7\hat{j} + 6\hat{k}) + \lambda (5\hat{i} + 4\hat{j} + 8\hat{k})
(b) r=(5i^4j^8k^)+λ(3i^+7j^+6k^)\vec{r} = (5\hat{i} - 4\hat{j} - 8\hat{k}) + \lambda (3\hat{i} + 7\hat{j} + 6\hat{k})
(c) r=(5i^+4j^+8k^)+λ(3i^+7j^+6k^)\vec{r} = (5\hat{i} + 4\hat{j} + 8\hat{k}) + \lambda (3\hat{i} + 7\hat{j} + 6\hat{k})
(d) r=(3i^+7j^+6k^)+λ(5i^4j^8k^)\vec{r} = (3\hat{i} + 7\hat{j} + 6\hat{k}) + \lambda (5\hat{i} - 4\hat{j} - 8\hat{k})

(xviii) The maximum value of Z=3x+5yZ = 3x+5y subject to constraints x+y4,x,y0x+y \leq 4, x,y \geq 0 is:
(a) 0
(b) 12
(c) 20
(d) 28

(xix) The probability of obtaining an even prime number on each die, when a pair of dice is rolled is:
(a) 0
(b) 112\tfrac{1}{12}
(c) 16\tfrac{1}{6}
(d) 136\tfrac{1}{36}

(xx) If P(A)=713,P(B)=913,P(AB)=413P(A) = \tfrac{7}{13}, P(B) = \tfrac{9}{13}, P(A \cap B) = \tfrac{4}{13}, then P(AB)P(A \cup B) is:
(a) 713\tfrac{7}{13}
(b) 79\tfrac{7}{9}
(c) 49\tfrac{4}{9}
(d) 47\tfrac{4}{7}




Section – B (Each question carries 2 Marks)

Q2. If A=[3112]A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}, find f(A)f(A) where f(x)=x25x+7f(x) = x^2 - 5x + 7.

Q3. Differentiate cos1(1x21+x2)\cos^{-1}\left(\dfrac{1-x^2}{1+x^2}\right) w.r.t xx.

Q4. Evaluate: ex[cotx+log(sinx)]dx\int e^x [\cot x + \log(\sin x)] dx.

Q5. Find the area of the region bounded by ellipse x24+y29=1\dfrac{x^2}{4} + \dfrac{y^2}{9} = 1.

Q6. A man 2 m high walks at uniform speed 5 m/s away from a lamp post 6 m high. Find the rate at which length of shadow increases.

Q7. A particle moves along curve 6y=x3+26y = x^3 + 2. Find points where yy-coordinate is changing 8 times as fast as xx-coordinate.

Q8. Find the projection of (i^+3j^+k^)(\hat{i} + 3\hat{j} + \hat{k}) on (7i^j^+8k^)(7\hat{i} - \hat{j} + 8\hat{k}).


Section – C (Each question carries 4 Marks)

Q9. Show that the function f:RR,f(x)=3x67f: \mathbb{R} \to \mathbb{R}, f(x) = \tfrac{3x-6}{7} is one-one and onto.

Q10. (a) If A=[43],B=[12]A = \begin{bmatrix} 4 \\ 3 \end{bmatrix}, B = \begin{bmatrix} -1 & 2 \end{bmatrix}, verify that (AB)T=BTAT(AB)^T = B^T A^T.
(b) Using determinants, find equation of line joining (1,2) and (3,6).

Q11. Find dydx\tfrac{dy}{dx} when xy+yx=2x^y + y^x = 2.

Q12. If x=tan(yalogy)x = \tan\left(\tfrac{y}{a}\log y\right), show that

(1+x2)dydx+(2xa)dydx=0(1 + x^2)\frac{dy}{dx} + (2x-a)\frac{dy}{dx} = 0

Q13. (a) Evaluate: 25x3dx\int_{2}^{5} |x-3| dx
(b) Evaluate: 0π/2[2logcosxlogsin2x]dx\int_{0}^{\pi/2} [2\log\cos x - \log \sin 2x] dx
(c) Evaluate: (tanx+cotx)dx\int (\tan x + \sqrt{\cot x}) dx


Section – D (Each question carries 6 Marks)

Q14. Solve LPP graphically: Max/Min Z=8x+5y2Z = 8x + 5y - 2 subject to constraints:

x+y10,  x+2y6,  3xy9,  y9,  x,y0x+y \leq 10, \; x+2y \geq 6, \; 3x-y \leq 9, \; y \leq 9, \; x,y \geq 0

Q15. A problem is given to 3 students whose chances of solving it are 13,15,17\tfrac{1}{3}, \tfrac{1}{5}, \tfrac{1}{7}. Find probability that:
(i) Problem is solved
(ii) Exactly one solves

OR

A factory has two machines A and B. Machine A produces 60% of items, B produces 40%. 2% of A’s items and 1% of B’s items are defective. If one item is chosen at random and found defective, find probability it was produced by B.

Q16. Solve system by Matrix Method:

5x+2y+z=3,2x+3z=1,3x2y+4z=15x + 2y + z = 3, \quad 2x + 3z = 1, \quad 3x - 2y + 4z = -1

OR

(a) Express [3542]\begin{bmatrix} 3 & 5 \\ 4 & 2 \end{bmatrix} as sum of symmetric and skew-symmetric matrices.
(b) If A=[3112]A = \begin{bmatrix} 3 & -1 \\ -1 & 2 \end{bmatrix}, show A25A+7I=0A^2 - 5A + 7I = 0. Hence find A1A^{-1}.

Q17. (a) Find general solution of DE:

dydx=(4+y2)(1+3x2)\frac{dy}{dx} = (4+y^2)(1+3x^2)

(b) Solve DE: dydx+3y=cos2x\tfrac{dy}{dx} + 3y = \cos 2x

(c) Show that height of cylinder of maximum volume inscribed in sphere radius RR is 2R3\tfrac{2R}{\sqrt{3}}. Also find max volume.

Q18. (a) Express a=5i^2j^+5k^\vec{a} = 5\hat{i} - 2\hat{j} + 5\hat{k} as sum of two vectors, one parallel and one perpendicular to b=3i^+k^\vec{b} = 3\hat{i} + \hat{k}.

(b) Find area of parallelogram with diagonals d1=i^2j^+3k^,d2=3i^+2j^+k^\vec{d}_1 = \hat{i} - 2\hat{j} + 3\hat{k}, \vec{d}_2 = 3\hat{i} + 2\hat{j} + \hat{k}.

Q19. Find equation of line through (1,2,3) and parallel to line

x21=y+37=z63\dfrac{x-2}{1} = \dfrac{y+3}{7} = \dfrac{z-6}{3}

Q20. (b) Find the shortest distance between lines:

r1=(i^+2j^+3k^)+λ(i^3j^+2k^)\vec{r}_1 = (\hat{i} + 2\hat{j} + 3\hat{k}) + \lambda (\hat{i} - 3\hat{j} + 2\hat{k})

and

r2=(4i^+5j^+6k^)+μ(2i^+3j^+k^)\vec{r}_2 = (4\hat{i} + 5\hat{j} + 6\hat{k}) + \mu (2\hat{i} + 3\hat{j} + \hat{k})


💐🌿Follow us for latest updates 👇👇👇

Featured post

Holiday Declared: ਮੰਗਲਵਾਰ ਦੀ ਸਰਕਾਰੀ ਛੁੱਟੀ ਦਾ ਐਲਾਨ

11 ਨਵੰਬਰ ਨੂੰ ਤਰਨ ਤਾਰਨ ਵਿਧਾਨ ਸਭਾ ਉਪਚੋਣ ਮੌਕੇ ਤਨਖਾਹ ਸਮੇਤ ਛੁੱਟੀ ਦਾ ਐਲਾਨ ਤਰਨ ਤਾਰਨ, 11 ਨਵੰਬਰ 2025  ( ਜਾਬਸ ਆਫ ਟੁਡੇ) — ਡਿਪਟੀ ਕਮਿਸ਼ਨਰ-ਕਮ-ਜ਼ਿਲ੍ਹਾ ਦੰ...

RECENT UPDATES

Trends