PSEB CLASS 12 MATHEMATICS SAMPLE PAPER

 PSEB CLASS 12 MATHEMATICS SAMPLE PAPER  SET 1 


Mathematics Paper
M.M. – 80
Time Allowed – 3 hrs

Section A (Each Question Carries one Mark)

Q1. MCQ (Choose the Correct Option)

(i) Let f:NNf: \mathbb{N} \to \mathbb{N} be defined as f(x)=x2f(x) = x^2, then
(a) ff is one-one only
(b) ff is onto only
(c) ff is both one and onto
(d) ff is neither one-one nor onto

(ii) If LL is a set of all straight lines in a plane and RR is a relation on LL defined as
R={(L1,L2):L1L2}R = \{ (L_1, L_2): L_1 \parallel L_2 \}, then relation RR is
(a) Reflexive only
(b) Symmetric only
(c) Transitive only
(d) Equivalence relation

(iii) Principal value of sin1(32)\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right) is
(a) 5π6\frac{5\pi}{6}
(b) π6\frac{\pi}{6}
(c) π6-\frac{\pi}{6}
(d) 5π6-\frac{5\pi}{6}

(iv) If AA is a matrix of order 2×32 \times 3 and BB is a matrix of order 4×24 \times 2, then order of ATBA^T B is
(a) 3×43 \times 4
(b) 4×34 \times 3
(c) 2×22 \times 2
(d) 2×42 \times 4

(v) Let AA be a square matrix of order 3×33 \times 3 and 2A=264|2A| = 264, then A|A| equals to
(a) 12
(b) 8
(c) 3
(d) 4

(vi) If [k44k]\begin{bmatrix} k & 4 \\ -4 & -k \end{bmatrix} is a singular matrix, then value of kk is
(a) 0
(b) ±4\pm 4
(c) 4
(d) -4

(vii) If the function defined by f(x)={sin5xx,x0k+2,x=0f(x) = \begin{cases} \dfrac{\sin 5x}{x}, & x \neq 0 \\ k+2, & x = 0 \end{cases} is continuous at x=0x=0, then value of kk is
(a) 0
(b) 2
(c) -2
(d) -1

(viii) If x=2at,y=at2x = 2at, y = at^2, then dydx\dfrac{dy}{dx} is equal to
(a) tt
(b) 2at2at
(c) 1t\dfrac{1}{t}
(d) 2a2a

(ix) If f(x)=x2+3x+4f(x) = x^2 + 3x + 4, then f(0)f'(0) is
(a) 6
(b) 3
(c) 4
(d) 9

(x) The interval for which the function f(x)=x26x+3f(x) = x^2 - 6x + 3 is strictly increasing is
(a) (-3, 3)
(b) (3, ∞)
(c) (-3, ∞)
(d) (-∞, 3)

(xi) 33(x5+sinx)dx\int_{-3}^3 (x^5 + \sin x) dx equals to
(a) 55+sin35^5 + \sin 3
(b) 3
(c) 0
(d) 6

(xii) (logx)2xdx\int \dfrac{(\log x)^2}{x} dx equals
(a) 1x+C\dfrac{1}{x} + C
(b) logx+C\log x + C
(c) (logx)22+C\dfrac{(\log x)^2}{2} + C
(d) (logx)33+C\dfrac{(\log x)^3}{3} + C

(xiii) The number of arbitrary constants in the particular solution of a differential equation of fourth order is
(a) 0
(b) 4
(c) 3
(d) 2

(xiv) The inequality a+ba+b|a+b| \leq |a| + |b| is called
(a) Cauchy–Schwartz Inequality
(b) Rolle’s Thm
(c) Triangular Inequality
(d) L.M.V. Thm

(xv) If a\vec{a} is any vector, then a×a\vec{a} \times \vec{a} is
(a) 0\vec{0}
(b) a2a^2
(c) a\vec{a}
(d) i^\hat{i}

(xvi) If lines x1K=y32=z+6a\dfrac{x-1}{2} = \dfrac{y-3}{2} = \dfrac{z+6}{a} and x11=y32=z+62\dfrac{x-1}{1} = \dfrac{y-3}{2} = \dfrac{z+6}{2} are perpendicular, then value of kk is 
(a) 0
(b) 2
(c) 1
(d) -2
(e) 3

(XVII) The vector form of line 

x53=y+41=z+86\dfrac{x-5}{3} = \dfrac{y+4}{-1} = \dfrac{z+8}{6} is:
(a) r=(3i^+7j^+6k^)+λ(5i^+4j^+8k^)\vec{r} = (3\hat{i} + 7\hat{j} + 6\hat{k}) + \lambda (5\hat{i} + 4\hat{j} + 8\hat{k})
(b) r=(5i^4j^8k^)+λ(3i^+7j^+6k^)\vec{r} = (5\hat{i} - 4\hat{j} - 8\hat{k}) + \lambda (3\hat{i} + 7\hat{j} + 6\hat{k})
(c) r=(5i^+4j^+8k^)+λ(3i^+7j^+6k^)\vec{r} = (5\hat{i} + 4\hat{j} + 8\hat{k}) + \lambda (3\hat{i} + 7\hat{j} + 6\hat{k})
(d) r=(3i^+7j^+6k^)+λ(5i^4j^8k^)\vec{r} = (3\hat{i} + 7\hat{j} + 6\hat{k}) + \lambda (5\hat{i} - 4\hat{j} - 8\hat{k})

(XVIII) The maximum value of Z=3x+5yZ = 3x + 5y subject to constraints x+y4,x,y0x + y \leq 4, x, y \geq 0 is
(a) 0
(b) 12
(c) 20
(d) 28

(XIX) The probability of obtaining an even prime number on each die, when a pair of dice is rolled is
(a) 0
(b) 112\dfrac{1}{12}
(c) 16\dfrac{1}{6}
(d) 136\dfrac{1}{36}

(XX) If P(A)=713,P(B)=913,P(AB)=413P(A) = \dfrac{7}{13}, P(B) = \dfrac{9}{13}, P(A \cap B) = \dfrac{4}{13}, then P(AB)P(A \cup B) is
(a) 713\dfrac{7}{13}
(b) 79\dfrac{7}{9}
(c) 49\dfrac{4}{9}
(d) 47\dfrac{4}{7}


Section – B (Each question carries two marks)

Q2. If A=[3112]A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}, find f(A)f(A) where f(x)=x25x+7f(x) = x^2 - 5x + 7.

Q3. Differentiate cos1(1x21+x2)\cos^{-1}\left(\dfrac{1 - x^2}{1 + x^2}\right) w.r.t. xx.

Q4. Evaluate: ex[cotx+log(sinx)]dx\int e^x \left[\cot x + \log(\sin x)\right] dx.

Q5. Find the area of the region bounded by the ellipse x24+y29=1\dfrac{x^2}{4} + \dfrac{y^2}{9} = 1.

Q6. A man 2 m high walks at a uniform speed of 5 m/s away from a lamp post 6 m high. Find the rate at which the length of shadow increases.

Q7. A particle moves along the curve 6y=x3+26y = x^3 + 2. Find the points on the curve at which the yy-coordinate is changing 8 times as fast as the xx-coordinate.

Q8. Find the projection of the vector (i^+3j^+k^)(\hat{i} + 3\hat{j} + \hat{k}) on the vector (7i^j^+8k^)(7\hat{i} - \hat{j} + 8\hat{k}).


Section – C (Each question carries four marks)

Q9. Show that the function f:RR,f(x)=3x67f: \mathbb{R} \to \mathbb{R}, f(x) = \dfrac{3x - 6}{7} is one-one and onto.

Q10 (a). If A=[43],B=[12]A = \begin{bmatrix} 4 \\ 3 \end{bmatrix}, B = \begin{bmatrix} -1 & 2 \end{bmatrix}, verify that (AB)T=BTAT(AB)^T = B^T A^T.
(b) Using determinants, find the equation of line joining (1,2) and (3,6).

Q11. Find dydx\dfrac{dy}{dx} when xy+yx=2x^y + y^x = 2.

Q12. If x=tan(yalogy)x = \tan \left(\dfrac{y}{a} \log y\right), show that (1+x2)dydx+(2xa)dydx=0(1 + x^2)\dfrac{dy}{dx} + (2x - a)\dfrac{dy}{dx} = 0.

Q13. Evaluate: 1x2+1dx\int \dfrac{1}{x^2 + 1} dx.

Q13. (a) Evaluate: 

25x3dx\int_{2}^{5} |x-3| \, dx

(b) Evaluate: 0π22logcosxlogsin2xdx\int_{0}^{\frac{\pi}{2}} 2 \log \cos x - \log \sin 2x \, dx

(c) Evaluate: (tanx+cotx)dx\int (\tan x + \sqrt{\cot x}) \, dx


Q14. Solve the LPP graphically:
Max and Min Z=8x+5y2Z = 8x + 5y - 2
subject to constraints:

x+y10,  x+2y6,  3xy9,  y9,  x,y0x+y \leq 10, \; x+2y \geq 6, \; 3x - y \leq 9, \; y \leq 9, \; x, y \geq 0


Q15. A problem is given to three students whose chances of solving it are 13,15,17\tfrac{1}{3}, \tfrac{1}{5}, \tfrac{1}{7} respectively. Find the probability that:
(i) the problem is solved
(ii) exactly one of them solves the problem.


Q15 (alt). A factory has two machines A and B. Machine A produces 60% of the items of the output and machine B produces 40% of the items. Further, 2% of the items produced by machine A and 1% produced by machine B are defective. All of the items are put into one stockpile and then one item is chosen at random and is found to be defective. Find the probability that it was produced by machine B.


Section – D (Each question carries 6 marks)

Q16. Solve the system of linear equations by Matrix Method:

5x+2y+z=3,2x+3z=1,3x2y+4z=15x + 2y + z = 3, \quad 2x + 3z = 1, \quad 3x - 2y + 4z = -1


Q16 (alt).
(a) Express the matrix [3542]\begin{bmatrix} 3 & 5 \\ 4 & 2 \end{bmatrix} as a sum of symmetric and skew-symmetric matrices.

(b) If A=[3112]A = \begin{bmatrix} 3 & -1 \\ -1 & 2 \end{bmatrix}, show that A25A+7I=0A^2 - 5A + 7I = 0. Hence find A1A^{-1}.


Q17. (a) Find the general solution of differential equation:

dydx=(4+y2)(1+3x2)\frac{dy}{dx} = (4 + y^2)(1 + 3x^2)

(b) Solve the differential equation:

dydx+3y=cos2x\frac{dy}{dx} + 3y = \cos 2x

(c) Show that the height of a cylinder of maximum volume that can be inscribed in a sphere of radius RR is 2R3\frac{2R}{\sqrt{3}}. Also find the maximum volume.


Q18. (a) Express a=5i^2j^+5k^\vec{a} = 5\hat{i} - 2\hat{j} + 5\hat{k} as the sum of two vectors such that one is parallel to b=3i^+k^\vec{b} = 3\hat{i} + \hat{k} and other is perpendicular to b\vec{b}.

(b) Find the area of parallelogram whose diagonals are
d1=i^2j^+3k^,d2=3i^+2j^+k^\vec{d}_1 = \hat{i} - 2\hat{j} + 3\hat{k}, \quad \vec{d}_2 = 3\hat{i} + 2\hat{j} + \hat{k}.


Q19. Find the equation of a line which passes through point (1,2,3)(1, 2, 3) and is parallel to the line x21=y+37=z63\dfrac{x-2}{1} = \dfrac{y+3}{7} = \dfrac{z-6}{3}.


(b) Find the shortest distance between lines:

r1=(i^+2j^+3k^)+λ(i^3j^+2k^)\vec{r}_1 = ( \hat{i} + 2\hat{j} + 3\hat{k} ) + \lambda ( \hat{i} - 3\hat{j} + 2\hat{k} )

and

r2=(4i^+5j^+6k^)+μ(2i^+3j^+k^)\vec{r}_2 = ( 4\hat{i} + 5\hat{j} + 6\hat{k} ) + \mu ( 2\hat{i} + 3\hat{j} + \hat{k} )



💐🌿Follow us for latest updates 👇👇👇

Featured post

Holiday Declared: ਮੰਗਲਵਾਰ ਦੀ ਸਰਕਾਰੀ ਛੁੱਟੀ ਦਾ ਐਲਾਨ

11 ਨਵੰਬਰ ਨੂੰ ਤਰਨ ਤਾਰਨ ਵਿਧਾਨ ਸਭਾ ਉਪਚੋਣ ਮੌਕੇ ਤਨਖਾਹ ਸਮੇਤ ਛੁੱਟੀ ਦਾ ਐਲਾਨ ਤਰਨ ਤਾਰਨ, 11 ਨਵੰਬਰ 2025  ( ਜਾਬਸ ਆਫ ਟੁਡੇ) — ਡਿਪਟੀ ਕਮਿਸ਼ਨਰ-ਕਮ-ਜ਼ਿਲ੍ਹਾ ਦੰ...

RECENT UPDATES

Trends