PSEB CLASS 11 MATHEMATICS ANSWER KEY 2025



Section-A — MCQs (1 mark each)

  1. Let A={1,{3},4,5}A=\{1,\{3\},4,5\}. Which of the following statements is true?
    A. 5A5\notin A
    B. {3}A\{3\}\in A
    C. {1,4}⊄A\{1,4\}\not\subset A
    D. {3}A\{3\}\subset A

  2. If P={0,2,5}P=\{0,2,5\} and Q={2,0,6}Q=\{2,0,6\} then QPQ-P is:
    A. {0,2}\{0,2\}
    B. {5}\{5\}
    C. {0,2,5,6}\{0,2,5,6\}
    D. {6}\{6\}

  3. Interval form of {t:tR, t2}\{t:t\in\mathbb{R},\ t\le -2\}:
    A. (0,2](0,-2]
    B. (,2)(-\infty,-2)
    C. (,2](-\infty,-2]
    D. [2,)[-2,\infty)

  4. {1}×{1,2}=\{-1\}\times\{1,2\}=
    A. {1,2}×{1}\{1,2\}\times\{-1\}
    B. {(1,1),(1,2)}\{(-1,1),(-1,2)\}
    C. {(1,1),(1,2)}\{(-1,-1),(-1,-2)\}
    D. {1,2}\{-1,-2\}

  5. Let R={(x2+1,x):x is an odd prime number less than 7}R=\{(x^2+1,x): x\ \text{is an odd prime number less than 7}\}. Then Domain of RR is:
    A. {3,5,7}\{3,5,7\}
    B. {3,5}\{3,5\}
    C. {10,26}\{10,26\}
    D. {10,26,50}\{10,26,50\}

  6. Domain of the function f(x)=xf(x)=\sqrt{x} is:
    A. (0,)(0,\infty)
    B. [0,)[0,\infty)
    C. (,0](-\infty,0]
    D. (,0)(-\infty,0)

  7. sin120\sin 120^\circ is equal to:
    A. 1/21/2
    B. 1/21/\sqrt2
    C. 3/2\sqrt3/2
    D. 3/2-\sqrt3/2

  8. sin13Acos5Acos13Asin5A=\sin 13A\cos5A-\cos13A\sin5A=
    A. sin8A\sin 8A
    B. sin18A\sin 18A
    C. cos8A\cos 8A
    D. cos18A\cos 18A

  9. If sinx=0.04\sin x=0.04 and cosx=0.04\cos x=-0.04, then xx lies in the quadrant:
    A. I
    B. II
    C. III
    D. IV

  10. x+iy=34ix+iy=3-4i then x+y=x+y=
    A. 1-1
    B. 7-7
    C. 11
    D. 77

  11. Imaginary part of (1+i)2(1+i)^2 is equal to:
    A. 00
    B. 22
    C. 2i2i
    D. 2-2

  12. Value of i101i^{-101} is equal to:
    A. 11
    B. 1-1
    C. ii
    D. i-i

  13. If SS is solution set of x1>3x7x-1>3x-7 when xx is a natural number, then
    A. 3S3\in S
    B. 4S4\in S
    C. 3S-3\in S
    D. 2S2\in S

  14. Solution set of 4<2x64<2x\le6 is:
    A. (4,6](4,6]
    B. (2,3)(2,3)
    C. (2,3](2,3]
    D. [2,3][2,3]

  15. The graph of a number line (filled dot at 3 and arrow to the left) represents which inequality? 



    A. x<3x<3
    B. x3x\le3
    C. x>3x>3
    D. x3x\ge3

  16. Number of triangles that can be drawn through 10 points on a circle is:
    A. 4545
    B. 9090
    C. 120120
    D. 240240

  17. Total number of ways in which “EAGLE” can be arranged are:
    A. 6060
    B. 120120
    C. 240240
    D. 480480

  18. How many 4-digit numbers can be formed from the digits {2,3,4,5}\{2,3,4,5\} which are divisible by 5, if no digit is repeated?
    A. 44
    B. 66
    C. 1212
    D. 2424

  19. Number of terms in the expansion of (1+x2)50(1+x^2)^{50} is:
    A. 33
    B. 5151
    C. 6060
    D. 100100

  20. If (1+x)5=1+5x+10x2+ax3+5x4+x5(1+x)^5=1+5x+10x^2+ax^3+5x^4+x^5, then a=a=
    A. 55
    B. 66
    C. 1010
    D. 1515


Answer Key — Section-A (MCQs)

  1. B

  2. D

  3. C

  4. B

  5. C

  6. B

  7. C

  8. A

  9. B

  10. A

  11. B

  12. D

  13. D

  14. C

  15. B

  16. C

  17. A

  18. B

  19. B

  20. C




Section-B (2 Marks Each)

Q.2. Let

S={x:x is a vowel in the English alphabet which precedes k},T={y:y is a letter in the word “EDUCATION”}.S=\{x : x \text{ is a vowel in the English alphabet which precedes k}\}, \quad T=\{y: y \text{ is a letter in the word “EDUCATION”}\}.

Find
(i) STS-T
(ii) STS \cap T.

Solution:

  • Vowels before ‘k’: A,E,IA, E, I. So S={A,E,I}S=\{A,E,I\}.

  • Letters of EDUCATION: T={E,D,U,C,A,T,I,O,N}T=\{E,D,U,C,A,T,I,O,N\}.

(i) ST=S-T=\emptyset (since all A,E,IA,E,I are in T).
(ii) ST={A,E,I}S \cap T=\{A,E,I\}.


Q.3. Draw the graph of f:RRf:\mathbb{R}\to\mathbb{R} defined by f(x)=xf(x)=|x|. Also write domain and range.

Solution:

  • Graph: V-shaped, vertex at (0,0).

  • Domain: (,)(-\infty,\infty).

  • Range: [0,)[0,\infty).


Q.4. A circular disc rotates 600 times in 10 minutes. Calculate the angle in radians turned in 20 seconds.

Solution:

  • 10 minutes = 600 seconds.

  • Rotations per second = 600/600=1600/600=1.

  • In 20 seconds → 20 rotations.

  • Angle = 20×2π=40π20 \times 2\pi = 40\pi radians.


Q.5. Solve: 53(x+1)<2(4x)5-3(x+1)<2(4-x).

Solution:
53x3<82x    23x<82x    x<6    x>6.5-3x-3<8-2x \implies 2-3x<8-2x \implies -x<6 \implies x>-6.
Answer: x(6,)x \in (-6,\infty).


Q.6. Find ℜe(13+4i)\Re\left(\frac{1}{3+4i}\right).

Solution:

13+4i34i34i=34i25.\frac{1}{3+4i}\cdot\frac{3-4i}{3-4i}=\frac{3-4i}{25}.

Real part = 325\frac{3}{25}.


Q.7. A committee of 6 members is to be formed from 7 boys and 9 girls. Find the number of ways the committee can have at least 5 girls.

Solution:

  • Case 1: 5 girls + 1 boy = (95)(71)=126×7=882\binom{9}{5}\binom{7}{1}=126 \times 7=882.

  • Case 2: 6 girls = (96)=84\binom{9}{6}=84.
    Total = 882+84=966882+84=966.


Q.8. Expand (1xx2)4\Big(\frac{1}{x}-\frac{x}{2}\Big)^4.

Solution:
Let a=1x,  b=x2a=\frac{1}{x},\; b=-\frac{x}{2}.
(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4.

  • a4=1x4a^4=\frac{1}{x^4}.

  • 4a3b=41x3(x2)=2x24a^3b=4\cdot\frac{1}{x^3}\cdot\left(-\frac{x}{2}\right)=-\frac{2}{x^2}.

  • 6a2b2=61x2x24=326a^2b^2=6\cdot\frac{1}{x^2}\cdot\frac{x^2}{4}=\frac{3}{2}.

  • 4ab3=41x(x38)=x224ab^3=4\cdot\frac{1}{x}\cdot\left(-\frac{x^3}{8}\right)=-\frac{x^2}{2}.

  • b4=x416b^4=\frac{x^4}{16}.

Final expansion:

1x42x2+32x22+x416.\frac{1}{x^4}-\frac{2}{x^2}+\frac{3}{2}-\frac{x^2}{2}+\frac{x^4}{16}.




Section-C (4 marks each)

Q.9. If A={t:tZ,t23},  B={y:y divides 6}A=\{t: t \in \mathbb{Z}, t^{2} \leq 3\},\; B=\{y: y \text{ divides } 6\} and C={x:xR,x2x=0}C=\{x: x \in \mathbb{R}, x^{2}-x=0\}, then find
(i) (AB)C(A \cup B) \cap C
(ii) C×(AB)C \times (A - B)


Q.10. If cosec x=257x = -\dfrac{25}{7} where xx is in 3rd quadrant, then find sin(3π2+x)\sin \left(\dfrac{3\pi}{2}+x\right).

Or

If tanx=125\tan x = -\dfrac{12}{5} where xx is in 4th quadrant, then find cosec (3π2x)\left(\dfrac{3\pi}{2}-x\right).


Q.11. Prove that

4cos300+3cosec150023sin(780)=3-4 \cos 300^{\circ} + \sqrt{3} \, \cosec 1500^{\circ} - 2 \sqrt{3} \, \sin (-780^{\circ}) = 3

Or

(a) Prove that

cos10xcos4xsin4xsin10x=tan7x\dfrac{\cos 10x - \cos 4x}{\sin 4x - \sin 10x} = \tan 7x

(b) Find cos105\cos 105^{\circ}.


Q.12. Find the value of tanπ8\tan \dfrac{\pi}{8}.


Q.13. Find the real numbers xx and yy if (xiy)(3+5i)(x - i y)(3 + 5i) is the conjugate of 624i-6 - 24i.

Or

If z1=3i,  z2=3+iz_{1}=3-i,\; z_{2}=3+i, find

z1+z2+1z1z2+1\left| \dfrac{z_{1}+z_{2}+1}{z_{1}-z_{2}+1} \right|


Q.14. Solve 5(x+4)3(2x+3)0,  2x+196x+475(-x+4) - 3(2x+3) \geq 0,\; 2x+19 \leq 6x+47 and represent the solution graphically on number line.


Q.15. In how many ways can the letters of the word PERMUTATIONS be arranged if the
(i) words start with R and end with S,
(ii) there are always 6 letters between P and S?




Section-D (6 marks each)

Q.16. Find sinx2,cosx2\sin \dfrac{x}{2}, \cos \dfrac{x}{2} and tanx2\tan \dfrac{x}{2} when secx=257,  x\sec x = -\dfrac{25}{7},\; x lies in 2nd quadrant.

Or

Find sinx2,cosx2\sin \dfrac{x}{2}, \cos \dfrac{x}{2} and tanx2\tan \dfrac{x}{2} when cosecx=257,  x\cosec x = \dfrac{25}{7},\; x lies in 2nd quadrant.


Q.17. How many numbers greater than 10,000,000 can be formed using the digits 1, 0, 3, 2, 4, 4, 1, 4?

Or

(a) Determine the number of 4-card combinations out of a deck of 52 cards if each selection of 4 cards has exactly three kings.

(b) In how many ways can 6 girls and 4 boys be seated in a row so that no two boys are together?


Q.18. Prove that

cos2x+cos2(x+π3)+cos2(xπ3)=32\cos^{2}x + \cos^{2}\left(x+\dfrac{\pi}{3}\right) + \cos^{2}\left(x-\dfrac{\pi}{3}\right) = \dfrac{3}{2}

Or

(a) Find the value of cos17π3\cos \dfrac{17\pi}{3}.

(b) Prove that

cos(5π4x)cos(5π4+x)=2sinx\cos\left(\dfrac{5\pi}{4}-x\right) - \cos\left(\dfrac{5\pi}{4}+x\right) = -\sqrt{2}\sin x



💐🌿Follow us for latest updates 👇👇👇

Featured post

Holiday Declared: ਮੰਗਲਵਾਰ ਦੀ ਸਰਕਾਰੀ ਛੁੱਟੀ ਦਾ ਐਲਾਨ

11 ਨਵੰਬਰ ਨੂੰ ਤਰਨ ਤਾਰਨ ਵਿਧਾਨ ਸਭਾ ਉਪਚੋਣ ਮੌਕੇ ਤਨਖਾਹ ਸਮੇਤ ਛੁੱਟੀ ਦਾ ਐਲਾਨ ਤਰਨ ਤਾਰਨ, 11 ਨਵੰਬਰ 2025  ( ਜਾਬਸ ਆਫ ਟੁਡੇ) — ਡਿਪਟੀ ਕਮਿਸ਼ਨਰ-ਕਮ-ਜ਼ਿਲ੍ਹਾ ਦੰ...

RECENT UPDATES

Trends