Mathematics Question Sample Paper – Class 12

 


Mathematics Question Paper – Class 12

Maximum Marks: 80
Time Allowed: 3 Hours


Section-A (Each question carries one mark)

Q1. MCQ (Choose the correct option):

(i) Let f:NNf: N \to N be defined as f(x)=x2f(x) = x^2, then
(a) f is one-one only
(b) f is onto only
(c) f is both one-one and onto
(d) f is neither one-one nor onto

(ii) Let L=L = set of all straight lines in plane and R is a relation on L defined as
R={(l1,l2)l1l2}R = \{ (l_1, l_2) \mid l_1 \parallel l_2 \}. Then relation R is
(a) Reflexive only
(b) Symmetric only
(c) Transitive only
(d) Equivalence relation

(iii) Principal value of sin1(1/2)\sin^{-1}(-1/2) is
(a) 5π/6
(b) π/6
(c) -π/6
(d) -5π/6

(iv) If A is a matrix of order 2×3 and B is a matrix of order 4×2, then order of ABTAB^T is
(a) 3×4
(b) 4×3
(c) 2×2
(d) 2×4

(v) Let A be a square matrix of order 3×3 and 2A=24|2A| = 24. Then A|A| equals to
(a) 12
(b) 8
(c) 3
(d) 4

(vi) If [k44k]\begin{bmatrix} k & 4 \\ -4 & -k \end{bmatrix} is a singular matrix, then value of k is
(a) 0
(b) ±4
(c) 4
(d) -4

(vii) If the function defined by
f(x)={sin5x2x,x0k+2,x=0f(x) = \begin{cases} \dfrac{\sin 5x}{2x}, & x \neq 0 \\ k+2, & x = 0 \end{cases}
is continuous at x=0x=0, then value of k is
(a) 1/2
(b) 2
(c) 5/2
(d) -1

(viii) If x=2at,y=at2x = 2at, y = at^2, then dydx\dfrac{dy}{dx} is equal to
(a) t/2a
(b) 2at
(c) 1/t
(d) 2a

(ix) If f(x)=x2+3x+4f(x) = x^2 + 3x + 4, then f(0)f’(0) is
(a) 3
(b) 4
(c) 9
(d) 2x+3

(x) The interval for which the function f(x)=x26x+3f(x) = x^2 - 6x + 3 is strictly increasing is
(a) (-3, 3)
(b) (3, ∞)
(c) (-3, ∞)
(d) (-∞, 3)

(xi) 03(x2+sinx)dx\int_{0}^{3} (x^2 + \sin x) dx equals to
(a) 3³ + sin 3
(b) 3
(c) 0
(d) 6

(xii) (logx)2xdx\int \dfrac{(\log x)^2}{x} dx equals
(a) 1/x + C
(b) log x + C
(c) (log x)²/2 + C
(d) (log x)³/3 + C

(xiii) The number of arbitrary constants in the particular solution of a differential equation of fourth order is
(a) 0
(b) 4
(c) 3
(d) 2

(xiv) The inequality abab|a·b| \leq |a||b| is called
(a) Cauchy–Schwartz Inequality
(b) Rolle’s Th.
(c) Triangular Inequality
(d) L.M.V Th.

(xv) If a\vec{a} is any vector, then a×a\vec{a} \times \vec{a} is
(a) 0
(b) a2a^2
(c) a\vec{a}
(d) a2\vec{a}^2

(xvi) If lines x12=y33=z+67\dfrac{x-1}{2} = \dfrac{y-3}{3} = \dfrac{z+6}{7} and x13=y32=z+62\dfrac{x-1}{3} = \dfrac{y-3}{2} = \dfrac{z+6}{2} are perpendicular, then value of k is
(a) 2
(b) 1
(c) -2
(d) 3

(xvii) The vector form of a line x53=y+47=z+86\dfrac{x-5}{3} = \dfrac{y+4}{7} = \dfrac{z+8}{6} is
(a) r=(3i^+7j^+6k^)+λ(5i^+4j^+8k^)\vec{r} = (3\hat{i} + 7\hat{j} + 6\hat{k}) + \lambda (5\hat{i} + 4\hat{j} + 8\hat{k})
(b) r=(5i^4j^8k^)+λ(3i^+7j^+6k^)\vec{r} = (5\hat{i} - 4\hat{j} - 8\hat{k}) + \lambda (3\hat{i} + 7\hat{j} + 6\hat{k})
(c) r=(5i^+4j^+8k^)+λ(3i^+7j^+6k^)\vec{r} = (5\hat{i} + 4\hat{j} + 8\hat{k}) + \lambda (3\hat{i} + 7\hat{j} + 6\hat{k})
(d) r=(3i^+7j^+6k^)+λ(5i^4j^8k^)\vec{r} = (3\hat{i} + 7\hat{j} + 6\hat{k}) + \lambda (5\hat{i} - 4\hat{j} - 8\hat{k})

(xviii) The maximum value of z=3x+5yz = 3x + 5y subject to constraints x+y4,x,y0x+y \leq 4, x,y \geq 0 is
(a) 0
(b) 12
(c) 20
(d) 28

(xix) The probability of obtaining an even prime number on each die, when a pair of dice is rolled, is
(a) 0
(b) 1/36
(c) 1/12
(d) 1/6

(xx) If P(A)=7/13,P(B)=9/13,P(AB)=4/13P(A) = 7/13, P(B) = 9/13, P(A \cap B) = 4/13, then P(AB)P(A \cup B) is
(a) 13/13
(b) 12/13
(c) 4/9
(d) 4/4


Section-B (Each question carries two marks)

Q2. If A=[3112]A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}, find f(A) where f(x)=x25x+7f(x) = x^2 - 5x + 7.

Q3. Differentiate cos1(1x21+x2)\cos^{-1}\left(\dfrac{1-x^2}{1+x^2}\right) w.r.t x.

Q4. Evaluate: ex(cotx+log(sinx))dx\int e^x (\cot x + \log (\sin x)) dx.

Q5. Find the area of the region bounded by the ellipse x24+y29=1\dfrac{x^2}{4} + \dfrac{y^2}{9} = 1.

Q6. A man 2 m high walks at a uniform speed of 5 m/s away from a lamp post 6 m high. Find the rate at which the length of shadow increases.

Q7. A particle moves along the curve 6y=x3/26y = x^{3/2}. Find the points on the curve at which the y-coordinate is changing 8 times as fast as the x-coordinate.

Q8. Find the projection of the vector i^+3j^+k^\hat{i} + 3\hat{j} + \hat{k} on the vector 7(i^j^+8k^)7(\hat{i} - \hat{j} + 8\hat{k}).


Section-C (Each question carries four marks)

Q9. Show that the function f:RR,f(x)=3x67f: R \to R, f(x) = \dfrac{3x-6}{7} is one-one and onto.

Q10.
(a) If A=[1143],B=[1201]A = \begin{bmatrix} 1 & -1 \\ -4 & 3 \end{bmatrix}, B = \begin{bmatrix} -1 & 2 \\ 0 & 1 \end{bmatrix}, verify that (AB)T=BTAT(AB)^T = B^T A^T.
(b) Using determinants, find the equation of line joining (1,2) and (3,6).

Q11. Find dydx\dfrac{dy}{dx} when xy+yx=ax^y + y^x = a.

Q12. If x=tan1(logy)x = \tan^{-1} (\log y), show that (1+x2)d2ydx2+(2xa)dydx=0(1+x^2)\dfrac{d^2y}{dx^2} + (2x-a)\dfrac{dy}{dx} = 0.

Q13.
(a) Evaluate 25x3dx\int_{2}^{5} |x-3| dx.
(b) Evaluate 0π/2logcosxlogsin2xdx\int_{0}^{\pi/2} \log \cos x - \log \sin 2x \, dx.
(c) Evaluate (tanx+cotx)dx\int (\tan x + \cot x) dx.


Section-D (Each question carries six marks)

Q14. Solve the LPP graphically:
Maximize or Minimize Z=8x+5y2Z = 8x + 5y - 2 subject to constraints:
x+y10,x+y6,3xy9,y9,x,y0x+y \leq 10, \, x+y \geq 6, \, 3x-y \leq 9, \, y \leq 9, \, x,y \geq 0.

Q15. A problem is given to three students whose chances of solving it are 1/2, 1/3, and 1/5 respectively. Find the probability that:
(i) The problem is solved.
(ii) Exactly one of them solves the problem.

(Alternative Q15) A factory has two machines A and B. Machine A produces 60% of the items and machine B produces 40%. Further, 2% of A’s items and 1% of B’s items are defective. One item is chosen at random and is found defective. Find the probability it was produced by B.

Q16. Solve the system of equations by Matrix Method:
5x+2y+z=3,2yy+3z=1,3x2y+4z=15x+2y+z=3, \, 2y-y+3z=1, \, 3x-2y+4z=-1.

Q17.
(a) Express [3142]\begin{bmatrix} 3 & 1 \\ 4 & 2 \end{bmatrix} as sum of symmetric and skew-symmetric matrices.
(b) If A=[3132]A = \begin{bmatrix} 3 & 1 \\ -3 & 2 \end{bmatrix}, show that A25A+7I=0A^2 - 5A + 7I = 0. Hence find A1A^{-1}.
(c) Solve the differential equation dydx+3y=cos2x\dfrac{dy}{dx} + 3y = \cos 2x.
(d) Show that height of a cylinder of maximum volume inscribed in a sphere of radius R is 2R3\dfrac{2R}{\sqrt{3}}. Also find maximum volume.

Q18.
(a) Express a=5i^2j^+5k^\vec{a} = 5\hat{i} - 2\hat{j} + 5\hat{k} as sum of two vectors, one parallel to b=3i^+k^\vec{b} = 3\hat{i} + \hat{k} and other perpendicular to b\vec{b}.
(b) Find area of parallelogram whose diagonals are a=i^2j^+3k^\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k} and b=3i^+2j^+k^\vec{b} = 3\hat{i} + 2\hat{j} + \hat{k}.

Q19. Find equation of line passing through (1,2,3) and parallel to line x21=y+37=z63\dfrac{-x-2}{1} = \dfrac{y+3}{7} = \dfrac{z-6}{3}.

Q20. Find the shortest distance between lines:
r1=(i^+2j^+3k^)+λ(i^3j^+2k^)\vec{r}_1 = (\hat{i} + 2\hat{j} + 3\hat{k}) + \lambda (\hat{i} - 3\hat{j} + 2\hat{k})
and
r2=(4i^+5j^+6k^)+μ(2i^+3j^+k^)\vec{r}_2 = (4\hat{i} + 5\hat{j} + 6\hat{k}) + \mu (2\hat{i} + 3\hat{j} + \hat{k}).



💐🌿Follow us for latest updates 👇👇👇

Featured post

Holiday Declared: ਮੰਗਲਵਾਰ ਦੀ ਸਰਕਾਰੀ ਛੁੱਟੀ ਦਾ ਐਲਾਨ

11 ਨਵੰਬਰ ਨੂੰ ਤਰਨ ਤਾਰਨ ਵਿਧਾਨ ਸਭਾ ਉਪਚੋਣ ਮੌਕੇ ਤਨਖਾਹ ਸਮੇਤ ਛੁੱਟੀ ਦਾ ਐਲਾਨ ਤਰਨ ਤਾਰਨ, 11 ਨਵੰਬਰ 2025  ( ਜਾਬਸ ਆਫ ਟੁਡੇ) — ਡਿਪਟੀ ਕਮਿਸ਼ਨਰ-ਕਮ-ਜ਼ਿਲ੍ਹਾ ਦੰ...

RECENT UPDATES

Trends